Feedloop AI
  • GETTING STARTED
    • Discover Feedloop AI
    • Authentication
      • Sign Up
      • Login
    • Platform
      • Workspace
      • Project
      • People
      • Usage
  • WHAT IS AGENT
    • What is Agent
      • ⚪Manage Agent
    • Basic Agent
      • ⚪Instruction
        • Who
        • What
      • ⚪Training
        • Rules
        • Example
      • ⚪Skill
        • Knowledge
        • Analys
      • ⚪Style
    • Procedures
    • Advance Reasoning
      • ⚪Creating New Agent
      • ⚪Advance Agent Activation
      • ⚪Deleting Agent
      • ⚪Advance Agent Managing Existing
  • AGENT SETTINGS
    • Instruction
      • Who
      • What
      • Additional Instruction
    • Training
      • Chat Rules
      • Retrieval
      • Answering
    • Context
      • Primitive Context
      • Array
    • Tools
      • Knowledge
      • API - Call
        • Manage API Call
        • Basic Configuration
        • Header
        • Body Field
          • Input Binding
            • Page 2
          • Output Binding
        • Testing API Call
        • Trouble Shooting
        • Example Implementation
          • API Call Covid
      • Data Connector
    • Card
      • Intro & Summary Text
      • Data Visualization Card
      • Analyze Card
    • Procedure Basic Info
      • Activation Condition
      • Goal
      • Action
    • Procedures Interaction
      • Procedures Step
      • Procedures Context
      • Procedures Tools
  • AGENT UTILITY
    • Resource
      • Document PDF
        • Preparing your PDF
      • Data Connector
        • Create new data connector
        • Configure dataset, table, and column
        • Using Data Playground
        • Dataset in Data Playground
        • Training in Data Playground
        • SQL generation and modification
        • SQL Execution
    • Apps
      • Chat Widget
      • Web App
    • Testing
    • Monitoring
      • Customer Chat
      • Context
      • Document
  • TASK
    • ⚪Image Analyzer
      • Building Analyzer
      • ID Identifier
    • ⚪Document Analyzer
      • Contractual Document Analyzer
    • ⚪Database Analyzer
    • ⚪Additional Solution
      • Text Sentiment Analyzer
      • Customer Complaint Analyzer
  • For Developer
    • API Chat
      • Chat Initialization
      • Chat Message
      • Chat History
      • Error Handling
    • Embed Widget
      • Embedding the Widget
      • Identity Attributes
      • Widget Attribute Details
Powered by GitBook
On this page
  1. AGENT UTILITY
  2. Resource
  3. Data Connector

Create new data connector

PreviousData ConnectorNextConfigure dataset, table, and column

Last updated 6 months ago

Choose Tab Resource

In the Feedloop AI platform, navigate to the "Resource" tab to manage various resources, including data connectors.

Click Create Resource

Within the "Resource" tab, locate and click on the "Create Resource" button to initiate the creation of a new resource.

Click on the "Create Data Connector" button:

Once in the resource creation interface, find and click on the "Create Data Connector" button to begin the setup process for a new data connector.

Choose Connector Type

A selection menu will appear, prompting you to choose the type of data connector. Currently, the available options are:

  • BigQuery

  • Postgres

  • Qorebase

  • IRIS

  • SQL Server

Choose the appropriate connector type based on your external data source.

Input Data Connector Information

Provide information about the data connector.

Input Credentials:

If you choose BigQuery as the connector type, you'll need to input the following credentials:

  • Client Email

  • Private Key

    • Example:

vbnetCopy code-----BEGIN PRIVATE KEY-----Your_Private_Key_Content_Here-----END PRIVATE KEY-----
  • Project ID

  • Connection ID

    • Example : projects/yourprojectname-283510/locations/us-central1/connections/dbtechsales

Click Next

After entering the necessary information and credentials, click on the "Next" button to proceed to the next stage of the data connector setup.

Choose Dataset

You will be presented with a list of datasets available in your BigQuery project. Choose the dataset that you want to connect to with the data connector.

Click Save Settings:

Once you have selected the dataset, click on the "Save Settings" button to save the configuration for the data connector.

Congratulations! You have successfully initiated the creation of a new data connector. The system will now proceed with the chosen settings and configurations to establish the connection with the selected dataset in BigQuery.

Example:

Example :

your-service-account@your-project.iam.gserviceaccount.com
projectname-283510
Input Data Connector
Data Connection Settings
Choose Dataset
Save Settings