Feedloop AI
  • GETTING STARTED
    • Discover Feedloop AI
    • Authentication
      • Sign Up
      • Login
    • Platform
      • Workspace
      • Project
      • People
      • Usage
  • WHAT IS AGENT
    • What is Agent
      • ⚪Manage Agent
    • Basic Agent
      • ⚪Instruction
        • Who
        • What
      • ⚪Training
        • Rules
        • Example
      • ⚪Skill
        • Knowledge
        • Analys
      • ⚪Style
    • Procedures
    • Advance Reasoning
      • ⚪Creating New Agent
      • ⚪Advance Agent Activation
      • ⚪Deleting Agent
      • ⚪Advance Agent Managing Existing
  • AGENT SETTINGS
    • Instruction
      • Who
      • What
      • Additional Instruction
    • Training
      • Chat Rules
      • Retrieval
      • Answering
    • Context
      • Primitive Context
      • Array
    • Tools
      • Knowledge
      • API - Call
        • Manage API Call
        • Basic Configuration
        • Header
        • Body Field
          • Input Binding
            • Page 2
          • Output Binding
        • Testing API Call
        • Trouble Shooting
        • Example Implementation
          • API Call Covid
      • Data Connector
    • Card
      • Intro & Summary Text
      • Data Visualization Card
      • Analyze Card
    • Procedure Basic Info
      • Activation Condition
      • Goal
      • Action
    • Procedures Interaction
      • Procedures Step
      • Procedures Context
      • Procedures Tools
  • AGENT UTILITY
    • Resource
      • Document PDF
        • Preparing your PDF
      • Data Connector
        • Create new data connector
        • Configure dataset, table, and column
        • Using Data Playground
        • Dataset in Data Playground
        • Training in Data Playground
        • SQL generation and modification
        • SQL Execution
    • Apps
      • Chat Widget
      • Web App
    • Testing
    • Monitoring
      • Customer Chat
      • Context
      • Document
  • TASK
    • ⚪Image Analyzer
      • Building Analyzer
      • ID Identifier
    • ⚪Document Analyzer
      • Contractual Document Analyzer
    • ⚪Database Analyzer
    • ⚪Additional Solution
      • Text Sentiment Analyzer
      • Customer Complaint Analyzer
  • For Developer
    • API Chat
      • Chat Initialization
      • Chat Message
      • Chat History
      • Error Handling
    • Embed Widget
      • Embedding the Widget
      • Identity Attributes
      • Widget Attribute Details
Powered by GitBook
On this page
  1. AGENT SETTINGS
  2. Training

Chat Rules

PreviousTrainingNextRetrieval

Last updated 9 months ago

Training Chat involves defining specific rules or conditions that trigger particular responses from the AI agent. This process ensures that the AI agent can provide structured and conditional responses based on user interactions. By specifying conditions and instructions, users can train the AI agent to follow these rules and produce the desired output in conversations.

Steps to Train the AI Agent for Chat:

  1. Input Condition: Define the conditions that must be met for the AI agent to use a particular response.

  2. Input Instruction: Define how the AI agent should respond during specific scenarios or interactions.

  3. Add Training: Click the "Save" button to add training cards.

Training by Chat