Feedloop AI
  • GETTING STARTED
    • Discover Feedloop AI
    • Authentication
      • Sign Up
      • Login
    • Platform
      • Workspace
      • Project
      • People
      • Usage
  • WHAT IS AGENT
    • What is Agent
      • ⚪Manage Agent
    • Basic Agent
      • ⚪Instruction
        • Who
        • What
      • ⚪Training
        • Rules
        • Example
      • ⚪Skill
        • Knowledge
        • Analys
      • ⚪Style
    • Procedures
    • Advance Reasoning
      • ⚪Creating New Agent
      • ⚪Advance Agent Activation
      • ⚪Deleting Agent
      • ⚪Advance Agent Managing Existing
  • AGENT SETTINGS
    • Instruction
      • Who
      • What
      • Additional Instruction
    • Training
      • Chat Rules
      • Retrieval
      • Answering
    • Context
      • Primitive Context
      • Array
    • Tools
      • Knowledge
      • API - Call
        • Manage API Call
        • Basic Configuration
        • Header
        • Body Field
          • Input Binding
            • Page 2
          • Output Binding
        • Testing API Call
        • Trouble Shooting
        • Example Implementation
          • API Call Covid
      • Data Connector
    • Card
      • Intro & Summary Text
      • Data Visualization Card
      • Analyze Card
    • Procedure Basic Info
      • Activation Condition
      • Goal
      • Action
    • Procedures Interaction
      • Procedures Step
      • Procedures Context
      • Procedures Tools
  • AGENT UTILITY
    • Resource
      • Document PDF
        • Preparing your PDF
      • Data Connector
        • Create new data connector
        • Configure dataset, table, and column
        • Using Data Playground
        • Dataset in Data Playground
        • Training in Data Playground
        • SQL generation and modification
        • SQL Execution
    • Apps
      • Chat Widget
      • Web App
    • Testing
    • Monitoring
      • Customer Chat
      • Context
      • Document
  • TASK
    • ⚪Image Analyzer
      • Building Analyzer
      • ID Identifier
    • ⚪Document Analyzer
      • Contractual Document Analyzer
    • ⚪Database Analyzer
    • ⚪Additional Solution
      • Text Sentiment Analyzer
      • Customer Complaint Analyzer
  • For Developer
    • API Chat
      • Chat Initialization
      • Chat Message
      • Chat History
      • Error Handling
    • Embed Widget
      • Embedding the Widget
      • Identity Attributes
      • Widget Attribute Details
Powered by GitBook
On this page
  1. AGENT SETTINGS
  2. Training

Answering

PreviousRetrievalNextContext

Last updated 9 months ago

training answering is related to the card system.

Training Answering involves teaching the AI agent how to present retrieved data in a chat format. This process ensures that after retrieving the necessary information, the AI agent can effectively communicate it to the user in a clear and structured manner. The instructions include guidelines on how to format the response, what additional elements to include, and the sequence of presenting the information.

Steps to Train the AI Agent for Answering:

  1. Input Condition: Define the conditions that must be met for the AI agent to use a particular skill to activate training

  2. Input Instruction: Define how the AI agent should answer and display data during specific scenarios or interactions.

  3. Input Condition: Define the conditions that must be met for the AI agent to use a particular skill to activate training

Add training answering